magnetar 为探测一种暗物质粒子,物理学家念起了什么魔咒

当前位置:首页 > 国际

magnetar 为探测一种暗物质粒子,物理学家念起了什么魔咒

发布时间:2020-12-17 04:53:55

奇异的宇宙

在过去半个世纪,我们对宇宙的理解经历了非凡的历程,无论是在大尺度上,还是在小尺度上。其中特别突出的是,我们认识到,极小尺度上的问题和极大尺度上的问题有着密切的联系,而这种联系往往以反直觉的形式呈现给我们。

标准模型——一系列相互关联的量子场论——在上世纪60年代到70年代被发展出来,以非常简洁的形式解释了当时已经发现的基本粒子。所有基本粒子可以用图1的“基本粒子表”来呈现。在这之后,标准模型经历了高强度的实验检验,到2012年希格斯玻色子发现为止,标准模型预言的所有粒子均被发现,量子电动力学做出的某些预言与实验结果的偏离度甚至小于亿分之一。

图1. 基本粒子 | Matic Lubej制作

另一方面,宇宙学在这段时间也经历了戏剧性的发展。对于20世纪上半个世纪的物理学家来说,“精确的宇宙学”简直就是痴人说梦,但现在我们确实有了“标准宇宙模型”,我们确切地知道宇宙有一个“开始”,我们也了解了宇宙从创世之初到今天的演化历程。大量观测结果与现有宇宙模型描述的差别在百分之一以内。这个模型通常被称为“ΛCDM”,其中的Λ代表暗能量,CDM代表冷暗物质。

尽管取得了这样的成功,粒子物理的标准模型和标准宇宙模型都面临着来自内部的深刻挑战。在粒子物理中,一个显著问题是许多参数的数值就像在针尖上保持平衡一样不可思议,而标准模型本身却无法解释这些诡异的事实——我们很快将讨论这样一个典型的“精细调节”问题。然而,但凡有新的理论想“修正”这些问题,就不可避免要引入新的粒子。

宇宙学方面更甚:ΛCDM模型的主要问题是,我们既不了解Λ,也不了解CDM!如果你觉得图1太复杂了,我想你肯定会喜欢图2的:标准模型能够描述的所有东西都在代表“常规物质”的小小黄色区域内 ,另外超过95%的部分,我们压根不知道是什么。我们倒是知道它们在哪,也知道它们对宇宙的影响。暗能量似乎无处不在,并且导致了宇宙的加速膨胀。或许暗能量就是简单的与时空相关的“真空能”,不过我们对时空的微观结构了解得太少。

图2. 已知的宇宙组成成分,根据ESA/Planck的数据修改而来。其中黄色部分为常规物质,也就是我们能够看到的星系、星云等,包括黑洞;蓝色部分为暗物质,紫色部分则为暗能量。

暗物质则聚集在星系和星系团簇中,与常规物质一样,它们通过引力与其他物质发生相互作用,不过到目前为止还没有发现除引力以外的其他相互作用。它们飘渺无着,但看起来均匀分布在整个星系空间内。想象一下,我们的太阳系带着我们以大约每小时72万公里的速度围绕银心旋转,暗物质从我们身边飞过,从身体里穿过,却不留下一丝痕迹。

简要地说,暗物质在超大尺度上对星系的形成和演化有着显著的影响,但在小尺度上完全“看不见”。现在,暗物质是理论和实验的一个重要的兴趣点——有很强的证据表明它们是“非-重子”的,也就是不由原子组成,这就意味着暗物质将打开标准模型以外的“新物理”。

暗物质与轴子

前面已经提到,对标准模型的理论扩展总是导致新的基本粒子出现。基于某些粒子物理问题而提出的假想粒子具有解释暗物质的所有正确性质:它们会与标准模型中的粒子发生极为微弱的相互作用,并且在早期宇宙中大量产生。如果我们能够证实这些粒子的存在,那么对于与暗物质相关的宇宙观测现象,我们将能够给出一个微观的物理解释。

图3. Axion洗洁精

轴子被普遍认为是这些粒子中的强力候选者之一。它可能也是唯一一个以一种消费产品的名字命名的粒子。轴子最早是在1977年由理论学家Roberto Peccei和Helen Quinn提出的,他们在解决强CP问题时作为解的一部分假设,而强CP问题是困扰标准模型最匪夷所思的精细调节问题之一。这里的“强”对应于量子色动力学,它描述了强核力,而CP则是各种理论中的一个正规对称性,即物理学定律无法区分物质和反物质。

所谓对称性,就是指在物理定律中,做某一种变换之后,该物理定律仍然是成立的。最典型的例子就是时间反演对称性:无论是牛顿力学、相对论力学还是量子力学中,如果把时间t换成-t,物理上是允许的,即不破坏物理定律。但事实上,我们知道打碎一个杯子是很常见的过程,但杯子的碎片聚集起来变成一个完整的杯子却从未发生过。回到CP对称性来,所谓物理学定律无法区分物质和反物质,意味着如果我们将量子电动力学方程中的粒子换成其反粒子,方程依旧是成立的。

我们已知的物理定律几乎都是CP对称的,然而,在今天的可观测宇宙中,物质却显著地多于反物质,因此CP对称性的破坏成为了理论上一个很大的兴趣点。尴尬的是,在量子色动力学中,我们却正好面对相反的问题。

QCD理论的数学形式强烈地违反CP对称性:CP对称性破坏的程度正比于两个独立的参数之和θ,且这一数值“应该”在1的量级。但是实验给出的极限表明,这一数值应该小于百亿分之一。换句话说,在标准模型中,强CP对称破坏好像“意外”地被抑制了,两个完全不相关的参数“意外”的正好大小相等、符号相反,导致它们加起来的数值θ非常之小!

为什么θ这么小?它可能严格等于零吗?从理论的自然性出发,一个特别小的物理量往往是不自然的,因为它的数值很可能依赖于其他物理参数的微调,除非由于某种对称性的限制,它的数值精确为零。

在Peccei-Quinn对强CP问题的解中,轴子扮演的角色就像是一种宇宙反馈回路,它在早期宇宙中出现,并且动态地消除了θ的任意初始值。这一简洁的理论机制在最早提出时与暗物质问题完全无关。起初,轴子的质量ma是一个自由参数——也就是说,PQ机制不要求ma具有任何特定的值。几年后,理论学家发现,如果ma远小于当初PQ机制假设的那样,轴子将与标准模型粒子有极为微弱的相互作用,此外,解决强CP问题还带来一个副效应:产生宇宙级丰度的轴子,换句话说,轻轴子可以组成暗物质!

后续的粒子物理实验结果和天文观测结果使得我们可以得出一个有趣的结论,那就是如果轴子被证实存在,那几乎可以断定,它至少组成了部分暗物质。轴子可能是最轻的基本粒子,它的质量上限与中微子的质量下限相当,而它的实际质量可能会小好几个数量级。但是,如果PQ机制解决了强CP问题,那么轴子在宇宙中的密度是如此之大,以至于它们的集体引力效应主导了宇宙中最大的结构演化和运动!

怎么探测暗物质轴子?

前面已经提到,天文学观测已经了解了暗物质对远距离星系、恒星以及尘埃之间运动的影响,我们有理由相信,暗物质无时无刻不在我们身边——这算是一个好消息吧?那接下来的问题就是,如何在实验室中更直接地探测其效应了。

既然我们知道暗物质有引力效应,那我们能不能在实验室中直接探测这种引力效应呢?回答是:毫无希望,因为引力是一种极其微弱的作用力,只能在相当大的尺度上才能探测到。所幸的是,暗物质还“可以”有非引力的相互作用——只要这种相互作用足够弱。这种相互作用不会影响星系运动,却可以在实验室中探测得到。

轴子有一个很吸引人的性质就是,如果它可以解决强CP问题,那么上述的这种相互作用“必须存在”。此外,表征这一相互作用强度的”耦合常数”可以给出界限来。假如我们可以造出一个足够灵敏的探测器,使得如果轴子的质量落在某个合适的区间时,探测器能够给出明显的信号,而如果探测不到这一“指针信号”,我们可以认为轴子的质量不在这个区间,那么我们就可以通过扫描的方式,逐步地缩小搜寻范围,直至找到轴子。

这是一个现实可行的实验方案,不过前提是能够造出这样一个“足够灵敏的探测器”。目前人类造出的最为灵敏的暗物质轴子探测器是基于一种所谓的“Haloscope”模型开发的,它包含一个极冷的微波谐振腔,一个高场磁体和一个超低噪声的微波放大器。为了给大家一个直观的印象,你可以把haloscope想象成一个核磁共振成像仪中放置了一个超灵敏的微波接收机。

轴子探测器是一个非常“非典型”的粒子探测器。粒子物理往往也被称为“高能物理”,新的粒子往往需要在更高的能量中找到,不过轴子的相互作用却发生在很低的能量,走向了粒子探测的另一个极端。此外,高能物理中,新粒子的发现往往依赖于大量的探测器,把大量高能粒子撞碎,然后寻找踪迹,而轴子则是在一个“极安静”的环境中,静静地等待相互作用事件的发生。轴子是如此之轻,与其说它是一种粒子,倒不如说它是一种波。高密度的轴子堆叠在一起,它们甚至可能发生“玻色-爱因斯坦凝聚”现象!当然,轴子都还没看到,去谈多轴子系统的凝聚现象就像坐在地上谈龙怎么梳头。

ABRACADABRA

当我给女儿讲绘本故事的时候,我接触到一句咒语“阿布拉卡达布拉”,这是女巫温妮在施放魔法时念的咒语。后来我才知道,这是西方的一句魔法咒语,据说起源于希伯来语,就如东方的“急急如律令”、佛语中的“波若波罗密多”等咒辞,或魔术中的“见证奇迹的时刻”。好奇妙,我居然喜欢上了这句咒语!前一阵,我又看到了这句咒语,不过是在MIT的科技新闻上[1]。一开始我也为项目名称ABRACADABRA感到醉了,经高人指点才恍然大悟。不得不说,主持项目的科学家们,你们好顽皮!

ABRACADABRA项目的轴子探测器。| 图片

欢迎分享转载 →magnetar 为探测一种暗物质粒子,物理学家念起了什么魔咒

Copyright © 2002-2020 鲁旭娱乐网 版权所有 备案号:粤ICP备14025430号-1

收藏本站 - 网站地图 - 关于我们 - 网站公告 - 广告服务